Close Menu
Earth & BeyondEarth & Beyond

    Subscribe to Updates

    Get the latest creative news from FooBar about art, design and business.

    What's Hot

    Rosalía Announces Massive 2026 Tour

    Hero World Challenge: Sepp Straka surges into lead with Scottie Scheffler one shot back at PGA Tour event | Golf News

    The Boys season 5’s first trailer and release date revealed at CCXP

    Facebook X (Twitter) Instagram
    Earth & BeyondEarth & Beyond
    YouTube
    Subscribe
    • Home
    • Business
    • Entertainment
    • Gaming
    • Health
    • Lifestyle
    • Sports
    • Technology
    • Trending & Viral News
    Earth & BeyondEarth & Beyond
    Subscribe
    You are at:Home»Technology»Radio burst from a stellar coronal mass ejection
    Technology

    Radio burst from a stellar coronal mass ejection

    Earth & BeyondBy Earth & BeyondNovember 12, 20250011 Mins Read
    Share Facebook Twitter Pinterest LinkedIn Tumblr Email
    Radio burst from a stellar coronal mass ejection
    Share
    Facebook Twitter LinkedIn Pinterest Email

  • Kouloumvakos, A. et al. Properties of solar energetic particle events inferred from their associated radio emission. Astron. Astrophys. 580, A80 (2015).

    Article 

    Google Scholar 

  • Badruddin, A. & Falak, Z. Study of the geoeffectiveness of coronal mass ejections, corotating interaction regions and their associated structures observed during Solar Cycle 23. Astrophys. Space Sci. 361, 253 (2016).

    Article 

    Google Scholar 

  • Khodachenko, M. L. et al. Coronal mass ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. I. CME impact on expected magnetospheres of Earth-like exoplanets in close-in habitable zones. Astrobiology 7, 167–184 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Kay, C., Opher, M. & Kornbleuth, M. Probability of CME impact on exoplanets orbiting M dwarfs and solar-like stars. Astrophys. J. 826, 195 (2016).

    Article 

    Google Scholar 

  • Varela, J. et al. MHD study of extreme space weather conditions for exoplanets with Earth-like magnetospheres: on habitability conditions and radio-emission. Space Weather 20, e2022SW003164 (2022).

    Article 

    Google Scholar 

  • Houdebine, E. R., Foing, B. H. & Rodono, M. Dynamics of flares on late-type dMe stars. I. Flare mass ejections and stellar evolution. Astron. Astrophys. 238, 249–255 (1990).

    Google Scholar 

  • Vida, K. et al. Investigating magnetic activity in very stable stellar magnetic fields. Long-term photometric and spectroscopic study of the fully convective M4 dwarf V374 Pegasi. Astron. Astrophys. 590, A11 (2016).

    Article 

    Google Scholar 

  • Favata, F. & Schmitt, J. H. M. M. Spectroscopic analysis of a super-hot giant flare observed on Algol by BeppoSAX on 30 August 1997. Astron. Astrophys. 350, 900–916 (1999).

    Google Scholar 

  • Loyd, R. O. P. et al. Constraining the physical properties of stellar coronal mass ejections with coronal dimming: application to far-ultraviolet data of ϵ Eridani. Astrophys. J. 936, 170 (2022).

    Article 

    Google Scholar 

  • Gopalswamy, N. Properties of interplanetary coronal mass ejections. Space Sci. Rev. 124, 145–168 (2006).

    Article 

    Google Scholar 

  • Gopalswamy, N. et al. Coronal mass ejections, type II radio bursts, and solar energetic particle events in the SOHO era. Ann. Geophys. 26, 3033–3047 (2008).

    Article 

    Google Scholar 

  • Feinstein, A. D. et al. Flare statistics for young stars from a convolutional neural network analysis of TESS data. Astron. J. 160, 219 (2020).

    Article 

    Google Scholar 

  • Günther, M. N. et al. Stellar flares from the first TESS data release: exploring a new sample of M dwarfs. Astron. J. 159, 60 (2020).

    Article 

    Google Scholar 

  • Dressing, C. D. & Charbonneau, D. The occurrence of potentially habitable planets orbiting M dwarfs estimated from the full Kepler dataset and an empirical measurement of the detection sensitivity. Astrophys. J. 807, 45 (2015).

    Article 

    Google Scholar 

  • Kasting, J. F., Whitmire, D. P. & Reynolds, R. T. Habitable zones around main sequence stars. Icarus 101, 108–128 (1993).

    Article 
    PubMed 

    Google Scholar 

  • Namekata, K. et al. Probable detection of an eruptive filament from a superflare on a solar-type star. Nat. Astron. 6, 241–248 (2021).

    Article 

    Google Scholar 

  • Argiroffi, C. et al. A stellar flare-coronal mass ejection event revealed by X-ray plasma motions. Nat. Astron. 3, 742–748 (2019).

    Article 

    Google Scholar 

  • Veronig, A. M. et al. Indications of stellar coronal mass ejections through coronal dimmings. Nat. Astron. 5, 697–706 (2021).

    Article 

    Google Scholar 

  • Alvarado-Gómez, J. D., Drake, J. J., Cohen, O., Moschou, S. P. & Garraffo, C. Suppression of coronal mass ejections in active stars by an overlying large-scale magnetic field: a numerical study. Astrophys. J. 862, 93 (2018).

    Article 

    Google Scholar 

  • Payne-Scott, R., Yabsley, D. E. & Bolton, J. G. Relative times of arrival of bursts of solar noise on different radio frequencies. Nature 160, 256–257 (1947).

    Article 

    Google Scholar 

  • Wild, J. P. & McCready, L. L. Observations of the spectrum of high-intensity solar radiation at metre wavelengths. I. The apparatus and spectral types of solar burst observed. Aust. J. Sci. Res. A Phys. Sci. 3, 387–398 (1950).

    Google Scholar 

  • Dulk, G. A. Radio emission from the sun and stars. Ann. Rev. Astron. Astrophys. 23, 169–224 (1985).

    Article 

    Google Scholar 

  • Su, W., Cheng, X., Ding, M. D., Chen, P. F. & Sun, J. Q. A type II radio burst without a coronal mass ejection. Astrophys. J. 804, 88 (2015).

    Article 

    Google Scholar 

  • Crosley, M. K. et al. The search for signatures of transient mass loss in active stars. Astrophys. J. 830, 24 (2016).

    Article 

    Google Scholar 

  • Crosley, M. K. & Osten, R. A. Low-frequency radio transients on the active M-dwarf EQ Peg and the search for coronal mass ejections. Astrophys. J. 862, 113 (2018).

    Article 

    Google Scholar 

  • Osten, R. A. & Wolk, S. J. A framework for finding and interpreting stellar CMEs. Proc. Int. Astron, Union 12, 243–251 (2016).

    Article 

    Google Scholar 

  • Villadsen, J. & Hallinan, G. Ultra-wideband detection of 22 coherent radio bursts on M dwarfs. Astrophys. J. 871, 214 (2019).

    Article 

    Google Scholar 

  • Zic, A. et al. A flare-type IV burst event from Proxima Centauri and implications for space weather. Astrophys. J. 905, 23 (2020).

    Article 

    Google Scholar 

  • Alvarado-Gómez, J. D. et al. Tuning the exospace weather radio for stellar coronal mass ejections. Astrophys. J. 895, 47 (2020).

    Article 

    Google Scholar 

  • Zic, A. et al. ASKAP detection of periodic and elliptically polarized radio pulses from UV Ceti. Mon. Not. R. Astron. Soc. 488, 559–571 (2019).

    Article 

    Google Scholar 

  • Callingham, J. R. et al. Low-frequency monitoring of flare star binary CR Draconis: long-term electron-cyclotron maser emission. Astron. Astrophys. 648, A13 (2021).

    Article 

    Google Scholar 

  • Bastian, T. S., Cotton, W. D. & Hallinan, G. Radio emission from UV Cet: auroral emission from a stellar magnetosphere. Astrophys. J. 935, 99 (2022).

    Article 

    Google Scholar 

  • Shimwell, T. W. et al. The LOFAR Two-metre Sky Survey. V. Second data release. Astron. Astrophys. 659, A1 (2022).

    Article 

    Google Scholar 

  • Colman, I. L. et al. Methods for the detection of stellar rotation periods in individual TESS sectors and results from the prime mission. Astron. J. 167, 189 (2024).

    Article 

    Google Scholar 

  • Mann, A. W. et al. How to constrain your M dwarf. II. The mass-luminosity-metallicity relation from 0.075 to 0.70 solar masses. Astrophys. J. 871, 63 (2019).

    Article 

    Google Scholar 

  • Gopalswamy, N. et al. Radio-quiet fast and wide coronal mass ejections. Astrophys. J. 674, 560–569 (2008).

    Article 

    Google Scholar 

  • Kumari, A., Morosan, D. E., Kilpua, E. K. J. & Daei, F. Type II radio bursts and their association with coronal mass ejections in solar cycles 23 and 24. Astron. Astrophys. 675, A102 (2023).

    Article 

    Google Scholar 

  • Gopalswamy, N. et al. The SOHO/LASCO CME Catalog. Earth Moon Planets 104, 295–313 (2009).

    Article 

    Google Scholar 

  • Maguire, C. A., Carley, E. P., Zucca, P., Vilmer, N. & Gallagher, P. T. LOFAR observations of a jet-driven piston shock in the low solar corona. Astrophys. J. 909, 2 (2021).

    Article 

    Google Scholar 

  • Grognard, R. J. M. & McLean, D. J. Non-existence of linear polarization in type III solar bursts at 80 MHz. Sol. Phys. 29, 149–161 (1973).

    Article 

    Google Scholar 

  • Dey, S., Kansabanik, D., Oberoi, D. & Mondal, S. First robust detection of linear polarization from metric solar emissions: challenging established paradigms. Astrophys. J. Lett. 988, L73 (2025).

    Article 

    Google Scholar 

  • Stewart, R. T. The polarization of “herring-bone” features in solar radio bursts of spectral type II. Aust. J. Phys. 19, 209–213 (1966).

    Article 

    Google Scholar 

  • Mann, G., Classen, T. & Aurass, H. Characteristics of coronal shock waves and solar type II radio bursts. Astron. Astrophys. 295, 775–781 (1995).

    Google Scholar 

  • Testa, P., Drake, J. J. & Peres, G. The density of coronal plasma in active stellar coronae. Astrophys. J. 617, 508–530 (2004).

    Article 

    Google Scholar 

  • Crosley, M. K. & Osten, R. A. Constraining stellar coronal mass ejections through multi-wavelength analysis of the active M dwarf EQ Peg. Astrophys. J. 856, 39 (2018).

    Article 

    Google Scholar 

  • Robrade, J., Poppenhaeger, K. & Schmitt, J. H. M. M. Quiescent and flaring X-ray emission from the nearby M/T dwarf binary SCR 1845-6357. Astron. Astrophys. 513, A12 (2010).

    Article 

    Google Scholar 

  • Giersch, O. D., Kennewell, J. & Lynch, M. Solar radio burst statistics and implications for space weather effects. Space Weather 15, 1511–1522 (2017).

    Article 

    Google Scholar 

  • Gopalswamy, N. & Kundu, M. R. Estimation of the mass of a coronal mass ejection from radio observations. Astrophys. J. Lett. 390, L37 (1992).

    Article 

    Google Scholar 

  • Gaia Collaboration. Gaia Data Release 3. Summary of the content and survey properties. Astron. Astrophys. 674, A1 (2023).

    Article 

    Google Scholar 

  • van Haarlem, M. P. et al. LOFAR: the LOw-Frequency ARray. Astron. Astrophys. 556, A2 (2013).

    Article 

    Google Scholar 

  • Shimwell, T. W. et al. The LOFAR Two-metre Sky Survey. I. Survey description and preliminary data release. Astron. Astrophys. 598, A104 (2017).

    Article 

    Google Scholar 

  • Tasse, C. Applying Wirtinger derivatives to the radio interferometry calibration problem. Preprint at (2014).

  • Smirnov, O. M. & Tasse, C. Radio interferometric gain calibration as a complex optimization problem. Mon. Not. R. Astron. Soc. 449, 2668–2684 (2015).

    Article 

    Google Scholar 

  • Tasse, C. et al. Faceting for direction-dependent spectral deconvolution. Astron. Astrophys. 611, A87 (2018).

    Article 

    Google Scholar 

  • Tasse, C. et al. The LOFAR Two-meter Sky Survey: Deep Fields Data Release 1. I. Direction-dependent calibration and imaging. Astron. Astrophys. 648, A1 (2021).

    Article 

    Google Scholar 

  • Callingham, J. R. et al. V-LoTSS: the circularly polarised LOFAR Two-metre Sky Survey. Astron. Astrophys. 670, A124 (2023).

    Article 

    Google Scholar 

  • Offringa, A. R. et al. WSCLEAN: an implementation of a fast, generic wide-field imager for radio astronomy. Mon. Not. R. Astron. Soc. 444, 606–619 (2014).

    Article 

    Google Scholar 

  • Callingham, J. R. et al. The population of M dwarfs observed at low radio frequencies. Nat. Astron. 5, 1233–1239 (2021).

    Article 

    Google Scholar 

  • Callingham, J. R., Farrell, S. A., Gaensler, B. M., Lewis, G. F. & Middleton, M. J. The X-Ray Transient 2XMMi J003833.3+402133: a candidate magnetar at high galactic latitude. Astrophys. J. 757, 169 (2012).

    Article 

    Google Scholar 

  • Callingham, J. R. et al. Anisotropic winds in a Wolf–Rayet binary identify a potential gamma-ray burst progenitor. Nat. Astron. 3, 82–87 (2019).

    Article 

    Google Scholar 

  • Arnaud, K. A. XSPEC: the first ten years. Proc. Astronomical Data Analysis Software and Systems V, Astronomical Society of the Pacific Conference Series Vol. 101 (eds Jacoby, G. H. & Barnes, J.) 17–20 (Astronomical Society of the Pacific, 1996).

  • Johnstone, C. P. & Güdel, M. The coronal temperatures of low-mass main-sequence stars. Astron. Astrophys. 578, A129 (2015).

    Article 

    Google Scholar 

  • Vedantham, H. K. et al. Coherent radio emission from a quiescent red dwarf indicative of star-planet interaction. Nat. Astron. 4, 577–583 (2020).

    Article 

    Google Scholar 

  • Stepanov, A. V. et al. Microwave plasma emission of a flare on AD Leo. Astron. Astrophys. 374, 1072–1084 (2001).

    Article 

    Google Scholar 

  • Giampapa, M. S. et al. The coronae of low-mass dwarf stars. Astrophys. J. 463, 707 (1996).

    Article 

    Google Scholar 

  • Benz, A. O. Plasma Astrophysics: Kinetic Processes in Solar and Stellar Coronae Vol. 184 (Kluwer Academic, 1993).

  • Reid, H. A. S. & Kontar, E. P. Langmuir wave electric fields induced by electron beams in the heliosphere. Astron. Astrophys. 598, A44 (2017).

    Article 

    Google Scholar 

  • Louis, C. K. et al. ExPRES: an exoplanetary and planetary radio emissions simulator. Astron. Astrophys. 627, A30 (2019).

    Article 

    Google Scholar 

  • Kavanagh, R. D. & Vedantham, H. K. Hunting for exoplanets via magnetic star–planet interactions: geometrical considerations for radio emission. Mon. Not. R. Astron. Soc. 524, 6267–6284 (2023).

    Article 

    Google Scholar 

  • Kavanagh, R. D., Vedantham, H. K., Rose, K. & Bloot, S. Unravelling sub-stellar magnetospheres. Astron. Astrophys. 692, A66 (2024).

    Article 

    Google Scholar 

  • Yu, S. et al. Detection of long-lasting aurora-like radio emission above a sunspot. Nat. Astron. 8, 50–59 (2024).

    Article 

    Google Scholar 

  • Titov, V. S. & Démoulin, P. Basic topology of twisted magnetic configurations in solar flares. Astron. Astrophys. 351, 707–720 (1999).

    Google Scholar 

  • Buchner, J. UltraNest – a robust, general purpose Bayesian inference engine. J. Open Source Softw. 6, 3001 (2021).

    Article 

    Google Scholar 

  • Buchner, J. A statistical test for nested sampling algorithms. Stat. Comput. 26, 383–392 (2016).

    Article 
    MathSciNet 

    Google Scholar 

  • Buchner, J. Collaborative nested sampling: Big Data versus complex physical models. Publ. Astron. Soc. Pac. 131, 108005 (2019).

    Article 

    Google Scholar 

  • Hess, S., Cecconi, B. & Zarka, P. Modeling of Io-Jupiter decameter arcs, emission beaming and energy source. Geophys. Res. Lett. 35, L13107 (2008).

    Article 

    Google Scholar 

  • Kaiser, M. L., Zarka, P., Kurth, W. S., Hospodarsky, G. B. & Gurnett, D. A. Cassini and Wind stereoscopic observations of Jovian nonthermal radio emissions: measurement of beam widths. J. Geophys. Res. Space Phys. 105, 16053–16062 (2000).

    Article 

    Google Scholar 

  • Treumann, R. A. The electron-cyclotron maser for astrophysical application. Astron. Astrophys. Rev. 13, 229–315 (2006).

    Article 

    Google Scholar 

  • Ilin, E. et al. Giant white-light flares on fully convective stars occur at high latitudes. Mon. Not. R. Astron. Soc. 507, 1723–1745 (2021).

    Article 

    Google Scholar 

  • Burst coronal ejection mass Radio Stellar
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Previous ArticleAnthropic announces $50 billion AI spend, two U.S. data centers
    Next Article PUBG Race returns for EMEA and Americas with West 2025
    Earth & Beyond
    • Website

    Related Posts

    This AI Model Can Intuit How the Physical World Works

    December 7, 2025

    How would the Netflix-Warner Bros. deal reshape Hollywood?

    December 6, 2025

    Welcome to the wellness surveillance state

    December 6, 2025
    Leave A Reply Cancel Reply

    Latest Post

    If you do 5 things, you’re more indecisive than most—what to do instead

    UK ministers launch investigation into blaze that shut Heathrow

    The SEC Resets Its Crypto Relationship

    How MLB plans to grow Ohtani, Dodger fandom in Japan into billions for league

    Stay In Touch
    • YouTube
    Latest Reviews

    This AI Model Can Intuit How the Physical World Works

    By Earth & BeyondDecember 7, 2025

    How would the Netflix-Warner Bros. deal reshape Hollywood?

    By Earth & BeyondDecember 6, 2025

    Welcome to the wellness surveillance state

    By Earth & BeyondDecember 6, 2025

    Subscribe to Updates

    Get the latest tech news from FooBar about tech, design and biz.

    Most Popular

    Blackpink Share New Song “Jump” Amid Deadline World Tour: Watch the Video

    July 13, 202518 Views

    Bitcoin in the bush – crypto mining brings power to rural areas

    March 25, 202513 Views

    A comprehensive list of 2025 tech layoffs

    October 25, 202510 Views
    Our Picks

    Rosalía Announces Massive 2026 Tour

    Hero World Challenge: Sepp Straka surges into lead with Scottie Scheffler one shot back at PGA Tour event | Golf News

    The Boys season 5’s first trailer and release date revealed at CCXP

    Subscribe to Updates

    Get the latest creative news from FooBar about art, design and business.

    © 2025 Earth & Beyond.
    • About Us
    • Contact Us
    • Privacy Policy
    • Terms and Conditions
    • Disclaimer

    Type above and press Enter to search. Press Esc to cancel.

    Newsletter Signup

    Subscribe to our weekly newsletter below and never miss the latest product or an exclusive offer.

    Enter your email address

    Thanks, I’m not interested