Close Menu
Earth & BeyondEarth & Beyond

    Subscribe to Updates

    Get the latest creative news from FooBar about art, design and business.

    What's Hot

    Travis Kelce’s Mom Donna Kelce Is Heading to ‘The Traitors’ Castle

    Tottenham Thomas Frank: ‘Left a big piece of my heart in Brentford’

    Pixar’s Next Big Movie, Elio, Is Bringing Back Bloopers

    Facebook X (Twitter) Instagram
    Earth & BeyondEarth & Beyond
    YouTube
    Subscribe
    • Home
    • Business
    • Entertainment
    • Gaming
    • Health
    • Lifestyle
    • Sports
    • Technology
    • Trending & Viral News
    Earth & BeyondEarth & Beyond
    Subscribe
    You are at:Home»Technology»A fully open AI foundation model applied to chest radiography
    Technology

    A fully open AI foundation model applied to chest radiography

    Earth & BeyondBy Earth & BeyondJune 11, 2025008 Mins Read
    Share Facebook Twitter Pinterest LinkedIn Tumblr Email
    A fully open AI foundation model applied to chest radiography
    Share
    Facebook Twitter LinkedIn Pinterest Email

  • Broder, J. S. Diagnostic Imaging for the Emergency Physician (ed. Broder, J. S.) Ch. 5, 185–296 (W. B. Saunders, 2011).

  • Çallı, E., Sogancioglu, E., van Ginneken, B., van Leeuwen, K. G. & Murphy, K. Deep learning for chest X-ray analysis: a survey. Med. Image Anal. 72, 102125 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Tajbakhsh, N., Roth, H., Terzopoulos, D. & Liang, J. Guest editorial annotation-efficient deep learning: the holy grail of medical imaging. IEEE Trans. Med. Imaging 40, 2526–2533 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L. H. & Aerts, H. J. Artificial intelligence in radiology. Nat. Rev. Cancer 18, 500–510 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, Y. et al. A foundation model for generalizable disease detection from retinal images. Nature 622, 156–163 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, Z., Bianchi, F., Yuksekgonul, M., Montine, T. J. & Zou, J. A visual–language foundation model for pathology image analysis using medical twitter. Nat. Med. 29, 2307–2316 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Christensen, M., Vukadinovic, M., Yuan, N. & Ouyang, D. Vision–language foundation model for echocardiogram interpretation. Nat. Med. 30, 1481–1488 (2024).

  • Tiu, E. et al. Expert-level detection of pathologies from unannotated chest X-ray images via self-supervised learning. Nat. Biomed. Eng. 6, 1399–1406 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, X., Wu, C., Zhang, Y., Xie, W. & Wang, Y. Knowledge-enhanced visual-language pre-training on chest radiology images. Nat. Commun. 14, 4542 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sellergren, A. B. et al. Simplified transfer learning for chest radiography models using less data. Radiology 305, 454–465 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Azizi, S. et al. Robust and data-efficient generalization of self-supervised machine learning for diagnostic imaging. Nat. Biomed. Eng. 7, 756–779 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Xu, S. et al. ELIXR: towards a general purpose X-ray artificial intelligence system through alignment of large language models and radiology vision encoders. Preprint at arxiv.org/abs/2308.01317 (2023).

  • Basdevant, A. et al. Towards a framework for openness in foundation models: proceedings from the Columbia Convening on openness in artificial intelligence. Preprint at arxiv.org/abs/2405.15802 (2024).

  • Ma, D., Pang, J., Gotway, M. B. & Liang, J. Foundation Ark: accruing and reusing knowledge for superior and robust performance. In Proc. International Conference on Medical Image Computing and Computer-Assisted Intervention (eds Greenspan, H. et al.) 651–662 (Springer, 2023).

  • Liu, Z. et al. Swin transformer: hierarchical vision transformer using shifted windows. In Proc. IEEE/CVF International Conference on Computer Vision (eds Hassner, T. et al.) 10012–10022 (IEEE, 2021).

  • Velan, S. S. Benchmarking and Boosting Localizers for Chest X-rays. Master’s thesis, Arizona State Univ. (2024).

  • Saravanan, M. Benchmarking and Boosting of 3D Segmentation Models. Master’s thesis, Arizona State Univ. (2024).

  • Islam, N. U. et al. Foundation X: integrating classification, localization, and segmentation through lock-release pretraining strategy for chest X-ray analysis. In Proc. IEEE/CVF Winter Conference on Applications of Computer Vision (eds Biswas, S. et al.) 3647–3656 (IEEE, 2025).

  • Wang, X. et al. Chestx-ray8: hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (eds Cucchiara, R. et al.) 2097–2106 (IEEE, 2017).

  • Pérez-García, F. et al. Exploring scalable medical image encoders beyond text supervision. Nat. Mach. Intell. 7, 119–130 (2025).

  • Ma, D. et al. Benchmarking and boosting transformers for medical image classification. In Proc. MICCAI Workshop on Domain Adaptation and Representation Transfer (eds Kamnitsas, K. et al.) 12–22 (Springer, 2022).

  • Cho, K. et al. Chess: chest X-ray pre-trained model via self-supervised contrastive learning. J. Digit. Imaging 36, 902–910 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kang, M. et al. Label-assemble: leveraging multiple datasets with partial labels. In Proc. 20th International Symposium on Biomedical Imaging (eds Salvado, O. et al.) 1–5 (IEEE, 2023).

  • Lee, J. et al. Deep learning for rare disease: a scoping review. J. Biomed. Inform. 135, 104227 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Yaqing, W., Quanming, Y., Kwok James, T. & Ni Lionel, M. Generalizing from a few examples: a survey on few-shot learning. ACM Comput. Surv. 53, 1–34 (2020).

    Google Scholar 

  • Holste, G. et al. CXR-LT: multi-label long-tailed classification on chest X-rays. PhysioNet 5, 19 (2023).

    Google Scholar 

  • Zhou, S. K. et al. A review of deep learning in medical imaging: imaging traits, technology trends, case studies with progress highlights, and future promises. Proc. IEEE 109, 820–838 (2021).

    Article 

    Google Scholar 

  • Wang, D. et al. A real-world dataset and benchmark for foundation model adaptation in medical image classification. Sci. Data 10, 574 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, L. et al. Generalizing deep learning for medical image segmentation to unseen domains via deep stacked transformation. IEEE Trans. Med. Imaging 39, 2531–2540 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cohen, J. P. et al. TorchXRayVision: a library of chest X-ray datasets and models. In Proc. International Conference on Medical Imaging with Deep Learning (eds Konukoglu, E. et al.) 231–249 (PMLR, 2022).

  • Glocker, B., Jones, C., Roschewitz, M. & Winzeck, S. Risk of bias in chest radiography deep learning foundation models. Radiol.: Artif. Intell. 5, e230060 (2023).

    PubMed 

    Google Scholar 

  • Seyyed-Kalantari, L., Zhang, H., McDermott, M. B., Chen, I. Y. & Ghassemi, M. Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs in under-served patient populations. Nat. Med. 27, 2176–2182 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Larrazabal, A. J., Nieto, N., Peterson, V., Milone, D. H. & Ferrante, E. Gender imbalance in medical imaging datasets produces biased classifiers for computer-aided diagnosis. Proc. Natl Acad. Sci. USA 117, 12592–12594 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Irvin, J. et al. CheXpert: a large chest radiograph dataset with uncertainty labels and expert comparison. In Proc. AAAI Conference on Artificial Intelligence, Vol. 33 (eds Hentenryck, P. V. & Zhou, Z. H.) 590–597 (AAAI, 2019).

  • Wang, L., Lin, Z. Q. & Wong, A. Covid-net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images. Sci. Rep. 10, 19549 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, F. et al. A medical multimodal large language model for future pandemics. npj Digit. Med. 6, 226 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xiao, J., Bai, Y., Yuille, A. & Zhou, Z. Delving into masked autoencoders for multi-label thorax disease classification. In Proc. IEEE/CVF Winter Conference on Applications of Computer Vision (eds Crandall, D. et al.) 3588–3600 (IEEE, 2023).

  • Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).

    MATH 

    Google Scholar 

  • Acosta, J. N., Falcone, G. J., Rajpurkar, P. & Topol, E. J. Multimodal biomedical AI. Nat. Med. 28, 1773–1784 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Soenksen, L. R. et al. Integrated multimodal artificial intelligence framework for healthcare applications. npj Digit. Med. 5, 149 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ye, M., Fang, X., Du, B., Yuen, P. C. & Tao, D. Heterogeneous federated learning: state-of-the-art and research challenges. ACM Comput. Surv. 56, 1–44 (2023).

    Google Scholar 

  • Nguyen, H. Q. et al. VinDr-CXR: an open dataset of chest X-rays with radiologist’s annotations. Sci. Data 9, 429 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Anouk Stein, M. et al. RSNA Pneumonia Detection Challenge. Kaggle (2018).

  • Jaeger, S. et al. Two public chest X-ray datasets for computer-aided screening of pulmonary diseases. Quant. Imaging Med. Surg. 4, 475 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Johnson, A. E. et al. MIMIC-CXR, a de-identified publicly available database of chest radiographs with free-text reports. Sci. Data 6, 317 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tajbakhsh, N. et al. Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans. Med. Imaging 35, 1299–1312 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Zawacki, A. et al. SIIM-ACR pneumothorax segmentation. Kaggle (2019).

  • Sogancioglu, E. et al. Nodule detection and generation on chest X-rays: NODE21 challenge. IEEE Trans. Med. Imaging 43, 2839–2853 (2024).

  • Goldbaum, M., Kermany, D. & Zhang, K. Labeled optical coherence tomography (OCT) and chest X-ray images for classification. Mendeley Data (2018).

  • Liu, Y., Wu, Y.-H., Ban, Y., Wang, H. & Cheng, M.-M. Rethinking computer-aided tuberculosis diagnosis. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (eds Liu, C. et al.) 2646–2655 (IEEE, 2020).

  • Khosla, P. et al. Supervised contrastive learning. In Proc. 33rd Advances in Neural Information Processing Systems (eds Larochelle, H. et al.) 18661–18673 (Curran Associates, 2020).

  • Oquab, M. et al. DINOv2: learning robust visual features without supervision. Transact. Mach. Learn. Res. (2024).

  • Xie, Z. et al. SimMIM: a simple framework for masked image modeling. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (eds Dana, K. et al.) 9653–9663 (IEEE, 2022).

  • Chen, X., Fan, H., Girshick, R. & He, K. Improved baselines with momentum contrastive learning. Preprint at arxiv.org/abs/2003.04297 (2020).

  • Cohen, J. P., Hashir, M., Brooks, R. & Bertrand, H. On the limits of cross-domain generalization in automated X-ray prediction. In Proc. Medical Imaging with Deep Learning (eds Arbel, T. et al.) 136–155 (PMLR, 2020).

  • Unal, I. Defining an optimal cut-point value in roc analysis: an alternative approach. Comput. Math. Methods Med. 2017, 3762651 (2017).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Jennewein, D. M. et al. The Sol supercomputer at Arizona State University. In Proc. Practice and Experience in Advanced Research Computing (eds Sinkovits, R. & Romanella, A.) 296–301 (ACM, 2023).

  • Song, C., Granqvist, F. & Talwar, K. Flair: federated learning annotated image repository. In Proc. 35th Advances in Neural Information Processing Systems (eds Koyejo, S. et al.) 37792–37805 (Curran Associates, 2022).

  • Yan, R. et al. Label-efficient self-supervised federated learning for tackling data heterogeneity in medical imaging. IEEE Trans. Med. Imaging 42, 1932–1943 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • applied chest Foundation fully model Open radiography
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Previous ArticleHoward Schultz backs CEO Brian Niccol strategy
    Next Article Los Angeles protests: more than 200 arrested during curfew, says LAPD; marines will have power to detain people – live | Los Angeles Ice protests
    Earth & Beyond
    • Website

    Related Posts

    Hubble Studies a Spiral’s Supernova Scene

    June 13, 2025

    A Mattress Testing Expert Breaks Down Natural and Organic Certifications (2025)

    June 13, 2025

    The Meta AI app is a privacy disaster

    June 13, 2025
    Leave A Reply Cancel Reply

    Latest Post

    If you do 5 things, you’re more indecisive than most—what to do instead

    UK ministers launch investigation into blaze that shut Heathrow

    The SEC Resets Its Crypto Relationship

    How MLB plans to grow Ohtani, Dodger fandom in Japan into billions for league

    Stay In Touch
    • YouTube
    Latest Reviews

    Hubble Studies a Spiral’s Supernova Scene

    By Earth & BeyondJune 13, 2025

    A Mattress Testing Expert Breaks Down Natural and Organic Certifications (2025)

    By Earth & BeyondJune 13, 2025

    The Meta AI app is a privacy disaster

    By Earth & BeyondJune 13, 2025

    Subscribe to Updates

    Get the latest tech news from FooBar about tech, design and biz.

    Most Popular

    Bitcoin in the bush – crypto mining brings power to rural areas

    March 25, 202513 Views

    Israeli Police Question Palestinian Director Hamdan Ballal After West Bank Incident

    March 25, 20258 Views

    How to print D&D’s new gold dragon at home

    March 25, 20257 Views
    Our Picks

    Travis Kelce’s Mom Donna Kelce Is Heading to ‘The Traitors’ Castle

    Tottenham Thomas Frank: ‘Left a big piece of my heart in Brentford’

    Pixar’s Next Big Movie, Elio, Is Bringing Back Bloopers

    Subscribe to Updates

    Get the latest creative news from FooBar about art, design and business.

    © 2025 Earth & Beyond.
    • About Us
    • Contact Us
    • Privacy Policy
    • Terms and Conditions
    • Disclaimer

    Type above and press Enter to search. Press Esc to cancel.

    Newsletter Signup

    Subscribe to our weekly newsletter below and never miss the latest product or an exclusive offer.

    Enter your email address

    Thanks, I’m not interested