Broder, J. S. Diagnostic Imaging for the Emergency Physician (ed. Broder, J. S.) Ch. 5, 185–296 (W. B. Saunders, 2011).
Çallı, E., Sogancioglu, E., van Ginneken, B., van Leeuwen, K. G. & Murphy, K. Deep learning for chest X-ray analysis: a survey. Med. Image Anal. 72, 102125 (2021).
Google Scholar
Tajbakhsh, N., Roth, H., Terzopoulos, D. & Liang, J. Guest editorial annotation-efficient deep learning: the holy grail of medical imaging. IEEE Trans. Med. Imaging 40, 2526–2533 (2021).
Google Scholar
Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L. H. & Aerts, H. J. Artificial intelligence in radiology. Nat. Rev. Cancer 18, 500–510 (2018).
Google Scholar
Zhou, Y. et al. A foundation model for generalizable disease detection from retinal images. Nature 622, 156–163 (2023).
Google Scholar
Huang, Z., Bianchi, F., Yuksekgonul, M., Montine, T. J. & Zou, J. A visual–language foundation model for pathology image analysis using medical twitter. Nat. Med. 29, 2307–2316 (2023).
Google Scholar
Christensen, M., Vukadinovic, M., Yuan, N. & Ouyang, D. Vision–language foundation model for echocardiogram interpretation. Nat. Med. 30, 1481–1488 (2024).
Tiu, E. et al. Expert-level detection of pathologies from unannotated chest X-ray images via self-supervised learning. Nat. Biomed. Eng. 6, 1399–1406 (2022).
Google Scholar
Zhang, X., Wu, C., Zhang, Y., Xie, W. & Wang, Y. Knowledge-enhanced visual-language pre-training on chest radiology images. Nat. Commun. 14, 4542 (2023).
Google Scholar
Sellergren, A. B. et al. Simplified transfer learning for chest radiography models using less data. Radiology 305, 454–465 (2022).
Google Scholar
Azizi, S. et al. Robust and data-efficient generalization of self-supervised machine learning for diagnostic imaging. Nat. Biomed. Eng. 7, 756–779 (2023).
Google Scholar
Xu, S. et al. ELIXR: towards a general purpose X-ray artificial intelligence system through alignment of large language models and radiology vision encoders. Preprint at arxiv.org/abs/2308.01317 (2023).
Basdevant, A. et al. Towards a framework for openness in foundation models: proceedings from the Columbia Convening on openness in artificial intelligence. Preprint at arxiv.org/abs/2405.15802 (2024).
Ma, D., Pang, J., Gotway, M. B. & Liang, J. Foundation Ark: accruing and reusing knowledge for superior and robust performance. In Proc. International Conference on Medical Image Computing and Computer-Assisted Intervention (eds Greenspan, H. et al.) 651–662 (Springer, 2023).
Liu, Z. et al. Swin transformer: hierarchical vision transformer using shifted windows. In Proc. IEEE/CVF International Conference on Computer Vision (eds Hassner, T. et al.) 10012–10022 (IEEE, 2021).
Velan, S. S. Benchmarking and Boosting Localizers for Chest X-rays. Master’s thesis, Arizona State Univ. (2024).
Saravanan, M. Benchmarking and Boosting of 3D Segmentation Models. Master’s thesis, Arizona State Univ. (2024).
Islam, N. U. et al. Foundation X: integrating classification, localization, and segmentation through lock-release pretraining strategy for chest X-ray analysis. In Proc. IEEE/CVF Winter Conference on Applications of Computer Vision (eds Biswas, S. et al.) 3647–3656 (IEEE, 2025).
Wang, X. et al. Chestx-ray8: hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (eds Cucchiara, R. et al.) 2097–2106 (IEEE, 2017).
Pérez-García, F. et al. Exploring scalable medical image encoders beyond text supervision. Nat. Mach. Intell. 7, 119–130 (2025).
Ma, D. et al. Benchmarking and boosting transformers for medical image classification. In Proc. MICCAI Workshop on Domain Adaptation and Representation Transfer (eds Kamnitsas, K. et al.) 12–22 (Springer, 2022).
Cho, K. et al. Chess: chest X-ray pre-trained model via self-supervised contrastive learning. J. Digit. Imaging 36, 902–910 (2023).
Google Scholar
Kang, M. et al. Label-assemble: leveraging multiple datasets with partial labels. In Proc. 20th International Symposium on Biomedical Imaging (eds Salvado, O. et al.) 1–5 (IEEE, 2023).
Lee, J. et al. Deep learning for rare disease: a scoping review. J. Biomed. Inform. 135, 104227 (2022).
Google Scholar
Yaqing, W., Quanming, Y., Kwok James, T. & Ni Lionel, M. Generalizing from a few examples: a survey on few-shot learning. ACM Comput. Surv. 53, 1–34 (2020).
Holste, G. et al. CXR-LT: multi-label long-tailed classification on chest X-rays. PhysioNet 5, 19 (2023).
Zhou, S. K. et al. A review of deep learning in medical imaging: imaging traits, technology trends, case studies with progress highlights, and future promises. Proc. IEEE 109, 820–838 (2021).
Google Scholar
Wang, D. et al. A real-world dataset and benchmark for foundation model adaptation in medical image classification. Sci. Data 10, 574 (2023).
Google Scholar
Zhang, L. et al. Generalizing deep learning for medical image segmentation to unseen domains via deep stacked transformation. IEEE Trans. Med. Imaging 39, 2531–2540 (2020).
Google Scholar
Cohen, J. P. et al. TorchXRayVision: a library of chest X-ray datasets and models. In Proc. International Conference on Medical Imaging with Deep Learning (eds Konukoglu, E. et al.) 231–249 (PMLR, 2022).
Glocker, B., Jones, C., Roschewitz, M. & Winzeck, S. Risk of bias in chest radiography deep learning foundation models. Radiol.: Artif. Intell. 5, e230060 (2023).
Google Scholar
Seyyed-Kalantari, L., Zhang, H., McDermott, M. B., Chen, I. Y. & Ghassemi, M. Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs in under-served patient populations. Nat. Med. 27, 2176–2182 (2021).
Google Scholar
Larrazabal, A. J., Nieto, N., Peterson, V., Milone, D. H. & Ferrante, E. Gender imbalance in medical imaging datasets produces biased classifiers for computer-aided diagnosis. Proc. Natl Acad. Sci. USA 117, 12592–12594 (2020).
Google Scholar
Irvin, J. et al. CheXpert: a large chest radiograph dataset with uncertainty labels and expert comparison. In Proc. AAAI Conference on Artificial Intelligence, Vol. 33 (eds Hentenryck, P. V. & Zhou, Z. H.) 590–597 (AAAI, 2019).
Wang, L., Lin, Z. Q. & Wong, A. Covid-net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images. Sci. Rep. 10, 19549 (2020).
Google Scholar
Liu, F. et al. A medical multimodal large language model for future pandemics. npj Digit. Med. 6, 226 (2023).
Google Scholar
Xiao, J., Bai, Y., Yuille, A. & Zhou, Z. Delving into masked autoencoders for multi-label thorax disease classification. In Proc. IEEE/CVF Winter Conference on Applications of Computer Vision (eds Crandall, D. et al.) 3588–3600 (IEEE, 2023).
Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).
Google Scholar
Acosta, J. N., Falcone, G. J., Rajpurkar, P. & Topol, E. J. Multimodal biomedical AI. Nat. Med. 28, 1773–1784 (2022).
Google Scholar
Soenksen, L. R. et al. Integrated multimodal artificial intelligence framework for healthcare applications. npj Digit. Med. 5, 149 (2022).
Google Scholar
Ye, M., Fang, X., Du, B., Yuen, P. C. & Tao, D. Heterogeneous federated learning: state-of-the-art and research challenges. ACM Comput. Surv. 56, 1–44 (2023).
Nguyen, H. Q. et al. VinDr-CXR: an open dataset of chest X-rays with radiologist’s annotations. Sci. Data 9, 429 (2022).
Google Scholar
Anouk Stein, M. et al. RSNA Pneumonia Detection Challenge. Kaggle (2018).
Jaeger, S. et al. Two public chest X-ray datasets for computer-aided screening of pulmonary diseases. Quant. Imaging Med. Surg. 4, 475 (2014).
Google Scholar
Johnson, A. E. et al. MIMIC-CXR, a de-identified publicly available database of chest radiographs with free-text reports. Sci. Data 6, 317 (2019).
Google Scholar
Tajbakhsh, N. et al. Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans. Med. Imaging 35, 1299–1312 (2016).
Google Scholar
Zawacki, A. et al. SIIM-ACR pneumothorax segmentation. Kaggle (2019).
Sogancioglu, E. et al. Nodule detection and generation on chest X-rays: NODE21 challenge. IEEE Trans. Med. Imaging 43, 2839–2853 (2024).
Goldbaum, M., Kermany, D. & Zhang, K. Labeled optical coherence tomography (OCT) and chest X-ray images for classification. Mendeley Data (2018).
Liu, Y., Wu, Y.-H., Ban, Y., Wang, H. & Cheng, M.-M. Rethinking computer-aided tuberculosis diagnosis. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (eds Liu, C. et al.) 2646–2655 (IEEE, 2020).
Khosla, P. et al. Supervised contrastive learning. In Proc. 33rd Advances in Neural Information Processing Systems (eds Larochelle, H. et al.) 18661–18673 (Curran Associates, 2020).
Oquab, M. et al. DINOv2: learning robust visual features without supervision. Transact. Mach. Learn. Res. (2024).
Xie, Z. et al. SimMIM: a simple framework for masked image modeling. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (eds Dana, K. et al.) 9653–9663 (IEEE, 2022).
Chen, X., Fan, H., Girshick, R. & He, K. Improved baselines with momentum contrastive learning. Preprint at arxiv.org/abs/2003.04297 (2020).
Cohen, J. P., Hashir, M., Brooks, R. & Bertrand, H. On the limits of cross-domain generalization in automated X-ray prediction. In Proc. Medical Imaging with Deep Learning (eds Arbel, T. et al.) 136–155 (PMLR, 2020).
Unal, I. Defining an optimal cut-point value in roc analysis: an alternative approach. Comput. Math. Methods Med. 2017, 3762651 (2017).
Google Scholar
Jennewein, D. M. et al. The Sol supercomputer at Arizona State University. In Proc. Practice and Experience in Advanced Research Computing (eds Sinkovits, R. & Romanella, A.) 296–301 (ACM, 2023).
Song, C., Granqvist, F. & Talwar, K. Flair: federated learning annotated image repository. In Proc. 35th Advances in Neural Information Processing Systems (eds Koyejo, S. et al.) 37792–37805 (Curran Associates, 2022).
Yan, R. et al. Label-efficient self-supervised federated learning for tackling data heterogeneity in medical imaging. IEEE Trans. Med. Imaging 42, 1932–1943 (2023).
Google Scholar