Casola, F., van der Sar, T. & Yacoby, A. Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond. Nat. Rev. Mater. 3, 17088 (2018).
Google Scholar
Song, T. et al. Direct visualization of magnetic domains and moiré magnetism in twisted 2D magnets. Science 374, 1140–1144 (2021).
Google Scholar
Schmitt, S. et al. Submillihertz magnetic spectroscopy performed with a nanoscale quantum sensor. Science 356, 832–837 (2017).
Google Scholar
Du, J., Shi, F., Kong, X., Jelezko, F. & Wrachtrup, J. Single-molecule scale magnetic resonance spectroscopy using quantum diamond sensors. Rev. Mod. Phys. 96, 025001 (2024).
Google Scholar
Shi, F. et al. Single-protein spin resonance spectroscopy under ambient conditions. Science 347, 1135–1138 (2015).
Google Scholar
Rosskopf, T. et al. Investigation of surface magnetic noise by shallow spins in diamond. Phys. Rev. Lett. 112, 147602 (2014).
Google Scholar
Staudacher, T. et al. Nuclear magnetic resonance spectroscopy on a (5-nanometer) 3 sample volume. Science 339, 561–563 (2013).
Google Scholar
Boss, J. M., Cujia, K. S., Zopes, J. & Degen, C. L. Quantum sensing with arbitrary frequency resolution. Science 356, 837–840 (2017).
Google Scholar
Aslam, N. et al. Nanoscale nuclear magnetic resonance with chemical resolution. Science 357, 67–71 (2017).
Google Scholar
Abobeih, M. H. et al. Atomic-scale imaging of a 27-nuclear-spin cluster using a quantum sensor. Nature 576, 411–415 (2019).
Google Scholar
Borst, M. et al. Observation and control of hybrid spin-wave–Meissner-current transport modes. Science 382, 430–434 (2023).
Google Scholar
Ji, W. et al. Correlated sensing with a solid-state quantum multisensor system for atomic-scale structural analysis. Nat. Photon. 18, 230–235 (2024).
Google Scholar
Rovny, J. et al. Nanoscale diamond quantum sensors for many-body physics. Nat. Rev. Phys. 6, 753–768 (2024).
Google Scholar
Andersen, T. I. et al. Electron-phonon instability in graphene revealed by global and local noise probes. Science 364, 154–157 (2019).
Google Scholar
Zu, C. et al. Emergent hydrodynamics in a strongly interacting dipolar spin ensemble. Nature 597, 45–50 (2021).
Google Scholar
Kolkowitz, S. et al. Probing Johnson noise and ballistic transport in normal metals with a single-spin qubit. Science 347, 1129–1132 (2015).
Google Scholar
Ku, M. J. H. et al. Imaging viscous flow of the Dirac fluid in graphene. Nature 583, 537–541 (2020).
Google Scholar
Jones, J. A. et al. Magnetic field sensing beyond the standard quantum limit using 10-spin NOON states. Science 324, 1166–1168 (2009).
Google Scholar
Hosten, O., Engelsen, N. J., Krishnakumar, R. & Kasevich, M. A. Measurement noise 100 times lower than the quantum-projection limit using entangled atoms. Nature 529, 505–508 (2016).
Google Scholar
Xie, T. et al. Beating the standard quantum limit under ambient conditions with solid-state spins. Sci. Adv. 7, eabg9204 (2021).
Google Scholar
Marciniak, C. D. et al. Optimal metrology with programmable quantum sensors. Nature 603, 604–609 (2022).
Google Scholar
Romach, Y. et al. Spectroscopy of surface-induced noise using shallow spins in diamond. Phys. Rev. Lett. 114, 017601 (2015).
Google Scholar
Myers, B. A. et al. Probing surface noise with depth-calibrated spins in diamond. Phys. Rev. Lett. 113, 027602 (2014).
Google Scholar
Barry, J. F. et al. Sensitivity optimization for NV-diamond magnetometry. Rev. Mod. Phys. 92, 015004 (2020).
Google Scholar
Cooper, A., Sun, W. K. C., Jaskula, J.-C. & Cappellar, P. Environment-assisted quantum-enhanced sensing with electronic spins in diamond. Phys. Rev. Appl. 12, 044047 (2019).
Google Scholar
Koehl, W. F., Buckley, B. B., Heremans, F. J., Calusine, G. & Awschalom, D. D. Room temperature coherent control of defect spin qubits in silicon carbide. Nature 479, 84–87 (2011).
Google Scholar
Babin, C. et al. Fabrication and nanophotonic waveguide integration of silicon carbide colour centres with preserved spin-optical coherence. Nat. Mater. 21, 67–73 (2022).
Google Scholar
Esat, T. et al. A quantum sensor for atomic-scale electric and magnetic fields. Nat. Nanotechnol. 19, 1466–1471 (2024).
Google Scholar
Kucsko, G. et al. Nanometre-scale thermometry in a living cell. Nature 500, 54–58 (2013).
Google Scholar
Maze, J. R. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008).
Google Scholar
Rugar, D. et al. Proton magnetic resonance imaging using a nitrogen-vacancy spin sensor. Nat. Nanotechnol. 10, 120–124 (2014).
Google Scholar
Wang, M. et al. Imaging magnetic transition of magnetite to megabar pressures using quantum sensors in diamond anvil cell. Nat. Commun. 15, 8843 (2024).
Google Scholar
Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008).
Google Scholar
Zhao, N. et al. Sensing single remote nuclear spins. Nat. Nanotechnol. 7, 657–662 (2012).
Google Scholar
Sushkov, A. O. et al. All-optical sensing of a single-molecule electron spin. Nano Letters 14, 6443–6448 (2014).
Google Scholar
Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).
Google Scholar
Guo, M. et al. A flexible nitrogen-vacancy center probe for scanning magnetometry. Rev. Sci. Instrum. 92, 055001 (2021).
Google Scholar
Han, S. et al. Solid-state spin coherence time approaching the physical limit. Sci. Adv. 11, eadr9298 (2025).
Google Scholar
Wang, M. et al. Self-aligned patterning technique for fabricating high-performance diamond sensor arrays with nanoscale precision. Sci. Adv. 8, eabn9573 (2022).
Google Scholar
Dolde, F. et al. Room-temperature entanglement between single defect spins in diamond. Nat. Phys. 9, 139–143 (2013).
Google Scholar
Iakoubovskii, K. & Stesmans, A. Vacancy clusters in diamond studied by electron spin resonance. Phys. Status Solidi A 201, 2509–2515 (2004).
Google Scholar
Sushkov, A. O. et al. Magnetic resonance detection of individual proton spins using quantum reporters. Phys. Rev. Lett. 113, 197601 (2014).
Google Scholar
Ungar, A., Cappellaro, P., Cooper, A. & Sun, W. K. C. Control of an environmental spin defect beyond the coherence limit of a central spin. PRX Quantum 5, 010321 (2024).
Google Scholar
Stacey, A. et al. Evidence for primal sp2 defects at the diamond surface: candidates for electron trapping and noise sources. Adv. Mater. Interfaces 6, 1801449 (2019).
Google Scholar
Murai, H. Spin-chemical approach to photochemistry: reaction control by spin quantum operation. J. Photochem. Photobiol. C Photochem. Rev. 3, 183–201 (2003).
Google Scholar
Huang, Z. et al. Parallel accelerated electron paramagnetic resonance spectroscopy using diamond sensors. Phys. Rev. Lett. 134, 130801 (2025).
Google Scholar
Bluvstein, D., Zhang, Z. R. & Jayich, A. C. B. Identifying and mitigating charge instabilities in shallow diamond nitrogen-vacancy centers. Phys. Rev. Lett. 122, 076101 (2019).
Google Scholar


