Close Menu
Earth & BeyondEarth & Beyond

    Subscribe to Updates

    Get the latest creative news from FooBar about art, design and business.

    What's Hot

    Israel is accused of the gravest war crimes in Gaza

    Bill Atkinson, Macintosh Pioneer and Inventor of Hypercard, Dies at 74

    How a gas deal helped save Equinor’s $5bn New York wind farm

    Facebook X (Twitter) Instagram
    Earth & BeyondEarth & Beyond
    YouTube
    Subscribe
    • Home
    • Business
    • Entertainment
    • Gaming
    • Health
    • Lifestyle
    • Sports
    • Technology
    • Trending & Viral News
    Earth & BeyondEarth & Beyond
    Subscribe
    You are at:Home»Technology»Structural insights into human Pol III transcription initiation in action
    Technology

    Structural insights into human Pol III transcription initiation in action

    Earth & BeyondBy Earth & BeyondJune 5, 2025009 Mins Read
    Share Facebook Twitter Pinterest LinkedIn Tumblr Email
    Structural insights into human Pol III transcription initiation in action
    Share
    Facebook Twitter LinkedIn Pinterest Email

  • Arimbasseri, A. G. & Maraia, R. J. RNA polymerase III advances: structural and tRNA functional views. Trends Biochem. Sci. 41, 546–559 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • White, R. J. Transcription by RNA polymerase III: more complex than we thought. Nat. Rev. Genet. 12, 459–463 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dumay-Odelot, H., Durrieu-Gaillard, S., El Ayoubi, L., Parrot, C. & Teichmann, M. Contributions of in vitro transcription to the understanding of human RNA polymerase III transcription. Transcription 5, e27526 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lata, E. et al. RNA polymerase III subunit mutations in genetic diseases. Front. Mol. Biosci. 8, 696438 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schramm, L. & Hernandez, N. Recruitment of RNA polymerase III to its target promoters. Genes Dev. 16, 2593–2620 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Arimbasseri, A. G., Rijal, K. & Maraia, R. J. Comparative overview of RNA polymerase II and III transcription cycles, with focus on RNA polymerase III termination and reinitiation. Transcription 5, e27639 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Dieci, G., Bosio, M. C., Fermi, B. & Ferrari, R. Transcription reinitiation by RNA polymerase III. Biochim. Biophys. Acta 1829, 331–341 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vorlander, M. K., Khatter, H., Wetzel, R., Hagen, W. J. H. & Muller, C. W. Molecular mechanism of promoter opening by RNA polymerase III. Nature 553, 295–300 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abascal-Palacios, G., Ramsay, E. P., Beuron, F., Morris, E. & Vannini, A. Structural basis of RNA polymerase III transcription initiation. Nature 553, 301–306 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hou, H. et al. Structure of the SNAPc-bound RNA polymerase III preinitiation complex. Cell Res. 33, 565–568 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shah, S. Z. et al. Structural insights into distinct mechanisms of RNA polymerase II and III recruitment to snRNA promoters. Nat. Commun. 16, 141 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Girbig, M. et al. Cryo-EM structures of human RNA polymerase III in its unbound and transcribing states. Nat. Struct. Mol. Biol. 28, 210–219 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hou, H. et al. Structural insights into RNA polymerase III-mediated transcription termination through trapping poly-deoxythymidine. Nat. Commun. 12, 6135 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, L. et al. Structure of human RNA polymerase III elongation complex. Cell Res. 31, 791–800 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Girbig, M. et al. Architecture of the yeast Pol III pre-termination complex and pausing mechanism on poly(dT) termination signals. Cell Rep. 40, 111316 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, Q. et al. Structural insights into transcriptional regulation of human RNA polymerase III. Nat. Struct. Mol. Biol. 28, 220–227 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Geiduschek, E. P. & Kassavetis, G. A. The RNA polymerase III transcription apparatus. J. Mol. Biol. 310, 1–26 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cramer, P. Organization and regulation of gene transcription. Nature 573, 45–54 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mattaj, I. W., Dathan, N. A., Parry, H. D., Carbon, P. & Krol, A. Changing the RNA polymerase specificity of U snRNA gene promoters. Cell 55, 435–442 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chong, S. S., Hu, P. & Hernandez, N. Reconstitution of transcription from the human U6 small nuclear RNA promoter with eight recombinant polypeptides and a partially purified RNA polymerase III complex. J. Biol. Chem. 276, 20727–20734 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gao, F. et al. Structural basis of σ54 displacement and promoter escape in bacterial transcription. Proc. Natl Acad. Sci. USA 121, e2309670120 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, L., Molodtsov, V., Lin, W., Ebright, R. H. & Zhang, Y. RNA extension drives a stepwise displacement of an initiation-factor structural module in initial transcription. Proc. Natl Acad. Sci. USA 117, 5801–5809 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zuo, Y., De, S., Feng, Y. & Steitz, T. A. Structural insights into transcription initiation from de novo rna synthesis to transitioning into elongation. iScience 23, 101445 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Goovaerts, Q. et al. Structures illustrate step-by-step mitochondrial transcription initiation. Nature 622, 872–879 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, C. et al. Structural visualization of de novo transcription initiation by Saccharomyces cerevisiae RNA polymerase II. Mol. Cell 82, 660–676 e669 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhan, Y., Grabbe, F., Oberbeckmann, E., Dienemann, C. & Cramer, P. Three-step mechanism of promoter escape by RNA polymerase II. Mol. Cell 84, 1699–1710 e1696 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, X. et al. Structural visualization of transcription initiation in action. Science 382, eadi5120 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, D., Bushnell, D. A., Westover, K. D., Kaplan, C. D. & Kornberg, R. D. Structural basis of transcription: role of the trigger loop in substrate specificity and catalysis. Cell 127, 941–954 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Teichmann, M., Wang, Z. & Roeder, R. G. A stable complex of a novel transcription factor IIB- related factor, human TFIIIB50, and associated proteins mediate selective transcription by RNA polymerase III of genes with upstream promoter elements. Proc. Natl Acad. Sci. USA 97, 14200–14205 (2000).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kassavetis, G. A., Letts, G. A. & Geiduschek, E. P. The RNA polymerase III transcription initiation factor TFIIIB participates in two steps of promoter opening. EMBO J. 20, 2823–2834 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mittal, V., Ma, B. & Hernandez, N. SNAPc: a core promoter factor with a built-in DNA-binding damper that is deactivated by the Oct-1 POU domain. Genes Dev. 13, 1807–1821 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hernandez, V. J., Hsu, L. M. & Cashel, M. Conserved region 3 of Escherichia coli final σ70 is implicated in the process of abortive transcription. J. Biol. Chem. 271, 18775–18779 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chedin, S., Riva, M., Schultz, P., Sentenac, A. & Carles, C. The RNA cleavage activity of RNA polymerase III is mediated by an essential TFIIS-like subunit and is important for transcription termination. Genes Dev. 12, 3857–3871 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bhargava, P. & Kassavetis, G. A. Abortive initiation by Saccharomyces cerevisiae RNA polymerase III. J. Biol. Chem. 274, 26550–26556 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Huang, Y., Intine, R. V., Mozlin, A., Hasson, S. & Maraia, R. J. Mutations in the RNA polymerase III subunit Rpc11p that decrease RNA 3’ cleavage activity increase 3’-terminal oligo(U) length and La-dependent tRNA processing. Mol. Cell. Biol. 25, 621–636 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alic, N. et al. Selectivity and proofreading both contribute significantly to the fidelity of RNA polymerase III transcription. Proc. Natl Acad. Sci. USA 104, 10400–10405 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vos, S. M., Farnung, L., Urlaub, H. & Cramer, P. Structure of paused transcription complex Pol II-DSIF-NELF. Nature 560, 601–606 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kang, J. Y. et al. RNA polymerase accommodates a pause RNA hairpin by global conformational rearrangements that prolong pausing. Mol. Cell 69, 802–815 e805 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • You, L. et al. Structural basis for intrinsic transcription termination. Nature 613, 783–789 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guo, X. et al. Structural basis for NusA stabilized transcriptional pausing. Mol. Cell 69, 816–827 e814 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Holstege, F. C., Fiedler, U. & Timmers, H. T. Three transitions in the RNA polymerase II transcription complex during initiation. EMBO J. 16, 7468–7480 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kassavetis, G. A., Riggs, D. L., Negri, R., Nguyen, L. H. & Geiduschek, E. P. Transcription factor IIIB generates extended DNA interactions in RNA polymerase III transcription complexes on tRNA genes. Mol. Cell. Biol. 9, 2551–2566 (1989).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kassavetis, G. A., Braun, B. R., Nguyen, L. H. & Geiduschek, E. P. S. cerevisiae TFIIIB is the transcription initiation factor proper of RNA polymerase III, while TFIIIA and TFIIIC are assembly factors. Cell 60, 235–245 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dieci, G. & Sentenac, A. Facilitated recycling pathway for RNA polymerase III. Cell 84, 245–252 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dieci, G. & Sentenac, A. Detours and shortcuts to transcription reinitiation. Trends Biochem. Sci 28, 202–209 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Huang, Y. & Maraia, R. J. Comparison of the RNA polymerase III transcription machinery in Schizosaccharomyces pombe, Saccharomyces cerevisiae and human. Nucleic Acids Res. 29, 2675–2690 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eschenlauer, J. B., Kaiser, M. W., Gerlach, V. L. & Brow, D. A. Architecture of a yeast U6 RNA gene promoter. Mol. Cell. Biol. 13, 3015–3026 (1993).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ferrari, R., Rivetti, C., Acker, J. & Dieci, G. Distinct roles of transcription factors TFIIIB and TFIIIC in RNA polymerase III transcription reinitiation. Proc. Natl Acad. Sci. USA 101, 13442–13447 (2004).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wade, J. T. & Struhl, K. The transition from transcriptional initiation to elongation. Curr. Opin. Genet. Dev. 18, 130–136 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Scheres, S. H. Semi-automated selection of cryo-EM particles in RELION-1.3. J. Struct. Biol. 189, 114–122 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Croll, T. I. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr. D 74, 519–530 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • action Human III initiation insights Pol Structural transcription
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Previous ArticleUK April inflation overstated because of car tax error, ONS says
    Next Article Amazon ‘testing humanoid robots to deliver packages’ | Amazon
    Earth & Beyond
    • Website

    Related Posts

    Bill Atkinson, Macintosh Pioneer and Inventor of Hypercard, Dies at 74

    June 8, 2025

    Lawyers could face ‘severe’ penalties for fake AI-generated citations, UK court warns

    June 7, 2025

    Meta’s going to revive an old nuclear power plant

    June 7, 2025
    Leave A Reply Cancel Reply

    Latest Post

    If you do 5 things, you’re more indecisive than most—what to do instead

    UK ministers launch investigation into blaze that shut Heathrow

    The SEC Resets Its Crypto Relationship

    How MLB plans to grow Ohtani, Dodger fandom in Japan into billions for league

    Stay In Touch
    • YouTube
    Latest Reviews

    Bill Atkinson, Macintosh Pioneer and Inventor of Hypercard, Dies at 74

    By Earth & BeyondJune 8, 2025

    Lawyers could face ‘severe’ penalties for fake AI-generated citations, UK court warns

    By Earth & BeyondJune 7, 2025

    Meta’s going to revive an old nuclear power plant

    By Earth & BeyondJune 7, 2025

    Subscribe to Updates

    Get the latest tech news from FooBar about tech, design and biz.

    Most Popular

    Bitcoin in the bush – crypto mining brings power to rural areas

    March 25, 202513 Views

    Israeli Police Question Palestinian Director Hamdan Ballal After West Bank Incident

    March 25, 20258 Views

    How to print D&D’s new gold dragon at home

    March 25, 20257 Views
    Our Picks

    Israel is accused of the gravest war crimes in Gaza

    Bill Atkinson, Macintosh Pioneer and Inventor of Hypercard, Dies at 74

    How a gas deal helped save Equinor’s $5bn New York wind farm

    Subscribe to Updates

    Get the latest creative news from FooBar about art, design and business.

    © 2025 Earth & Beyond.
    • About Us
    • Contact Us
    • Privacy Policy
    • Terms and Conditions
    • Disclaimer

    Type above and press Enter to search. Press Esc to cancel.

    Newsletter Signup

    Subscribe to our weekly newsletter below and never miss the latest product or an exclusive offer.

    Enter your email address

    Thanks, I’m not interested